Identities for Families of Orthogonal Polynomials and Special Functions
نویسنده
چکیده
In this article we present new results for families of orthogonal polynomials and special functions, that are determined by algorithmical approaches. In the first section, we present new results, especially for discrete families of orthogonal polynomials, obtained by an application of the celebrated Zeilberger algorithm. Next, we present algorithms for holonomic families f(n, x) of special functions which possess a derivative rule. We call those families admissible. A family f(n, x) is holonomic if it satisfies a holonomic recurrence equation with respect to n, and a holonomic differential equation with respect to x, i. e. linear homogeneous equations with polynomial coefficients. The rather rigid property of admissibility has many interesting consequences, that can be used to generate and verify identities for these functions by linear algebra techniques. On the other hand, many families of special functions, in particular families of orthogonal polynomials, are admissible. We moreover present a method that generates the derivative rule from the holonomic representation of a holonomic family. As examples, we find new identities for the Jacobi polynomials and for the Whittaker functions, and for families of discrete orthogonal polynomials by the given approach. Finally, we present representations for the parameter derivatives of the Gegenbauer and the generalized Laguerre polynomials.
منابع مشابه
Some new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کاملBuckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملAlgorithmic Work with Orthogonal Polynomials and Special Functions
In this article we present a method to implement orthogonal polynomials and many other special functions in Computer Algebra systems enabling the user to work with those functions appropriately, and in particular to verify different types of identities for those functions. Some of these identities like differential equations, power series representations, and hypergeometric representations can ...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کامل